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1 Executive Summary 

 

This report summarises work carried out as part of the NHSX PhD internship project entitled 

“Value of Commercial Product Sales Data in Healthcare Prediction”. 

 

The primary aim of the project was to apply the novel variable importance technique, MCR 

(Model Class Reliance), to machine learning models which could predict registered respiratory 

deaths in the UK.  The objective was to assess the value of commercial health data in healthcare 

predictions compared to other available datasets. 

 

In order to apply MCR, a set of optimal models have to be created which can successfully make 

the required predictions. The project managed to achieve this outcome with the machine learning 

model PADRUS (Predicting the amount of deaths by respiratory disease using sales). PADRUS 

is a random forest regressor which makes accurate weekly predictions of respiratory deaths in 

314 local authorities across England 17 days in advance. The models’ features are created from 

the following dataset types: week number, commercial sales, weather, indices of multiple 

deprivation, age and population, demographics, housing, and land use. 

 

MCR was applied to PADRUS showing the highest and lowest impact variables had on 

predictions across all instances of the model. Grouped MCR was also employed in order for 

variables to be evaluated in concert as a collection of features created from a dataset type. The 

MCR results implied model instances of PADRUS were using variables in different ways to 

achieve the same predictive results, and suggested where variables could be interchangeable or 

critical to predictions.     

 
2 Introduction 

 

Respiratory disease (ICD 10 coding: J00 - J99) was the underlying cause in 369,900 deaths in 

England and Wales in the years 2015 to 2019 [1].  In 2020 the COVID-19 pandemic became the 

leading cause of death in England and Wales [1]. COVID-19 is now reported on 167,927 UK 

death certificates to date [2].  With COVID-19 appearing to become a dominant and long-

standing disease affecting the respiratory system [2, 3] it is now critically important to 

investigate how to forecast the impacts of Influenza-like Illnesses (ILI) on a population. In 

answer to this need an increased effort has been made to include social and behavioural data to 

produce integrated disease models, which may outperform those from a traditional 

epidemiological standpoint [4, 5, 6, 7, 8, 9]. In their review of integrated disease models, Bedson 

et al. report that there is a gap in using these social and behavioural datasets due to the lack of 

access to operational data that would be useful in real-world dynamic circumstances [4]. 

Predominantly these additional social and behavioural datasets are sourced through qualitative 

methods relying heavily on surveys and self-reports [4, 5, 6, 7, 8].  Survey data and sample size 
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is often limited by budget and capacity, and captures one moment in time.  Self-reports, often 

used in apps [5, 10] or monitored through analysis of social media accounts [11,12] can also be 

subject to reporting bias due to memory failures and social desirability. This suggests the need to 

capture objectively recorded sources of dynamic behavioural data, that supplement and 

complement qualitative data, and can be applied to real-time incidents.  Types of datasets which 

meet these requirements have already been applied to covid modelling, mainly in the form of 

mobility data with some success [13, 14].  An alternative dataset which could also meet these 

requirements is shopping data, especially pertinent purchases of healthcare products. No recent 

integrated disease models in the UK have included transactional data in the form of retail sales 

that we are aware of, and its use in health surveillance of ILI is not currently prevalent [15, 16, 

17]. 

 
Recorded and stored by UK retailers, personal transactional data offers national longitudinal 

time-stamped data on customer purchases at a high geographical granularity.  Transactional retail 

data is updated in real-time and can be used to gain insights into population health [18, 19, 20, 

21].  Shopping data is considered a traditional dataset for use in health surveillance systems, 

especially medication (16, 22, 23), and was revealed as a potential indicator of influenza in the 

community by Welliver et al. in 1979 [24]. Hogan et al. showed a high correlation between 

respiratory and diarrheal outbreaks in children and sales of over-the-counter electrolyte products 

[25]. Socan, Erčulj and Lajovic showed a moderately high correlation between medicines for 

sore throat, antitussives, decongestants and mucolytics, and weekly influenza incidence; the sales 

of antitussives alone could predict increased incident rates [26]. 

 
However, Al-Tawfiq et al.’s review of health surveillance systems for emerging respiratory 

viruses reported mixed results from monitoring over-the-counter drugs [27].  Pivette et al. 

systematic review of drug sales in outbreak detection did find the potential for earlier alerts, yet 

noted challenges in selecting indicator drug groups and poor-quality clinical surveillance data 

[15]. In the UK, Davies and Finch’s 2003 study using Nottingham City Hospital NHS, Boots and 

Reckitt Benckiser pharmacies data for the three winter periods, showed over-the-counter 

cough/cold remedies may give two weeks warning of peaks in admissions for respiratory illness 

[28].  In contrast, at a UK national scale Todd, Diggle et al. show there was no significant 

correlation between retail sales of symptom remedies and cases for the 2009 influenza outbreak 

[29]. However, lower scale geospatial areas were not considered, with England and Wales 

divided into only 6 regions, and correlation was looked for between purchases and flu cases 

rather than hospital admissions or deaths [29]. 

 
The aim of this study was to investigate whether shopping data in the UK has value in models 

used to forecast deaths by respiratory disease.  Yet, establishing the predictive capability of sales 

data in itself, is not enough to show its value. To warrant the investment in the use of shopping 

data in integrated disease models, we must also investigate its value via comparison against other 

variables.  After initial exploratory analysis showed the potential of sales data in predicting 

deaths by respiratory disease in the UK, a new experimental design to compare the use of sales 

data against other datasets used in the prediction of respiratory deaths was created. In line with 

Hofman et al.’s recommendations on computational social science we create an appropriate 

baseline model, perform out-of-sample testing and devote attention to combining prediction and 

explanation [30].  We establish this by the inclusion in the predictive models of input variables 
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(features) created by multiple datasets outside of sales data.  We then explain how these datasets 

compare in importance to making the models predictions. To ensure the robustness of this 

variable importance analysis, we use the novel technique of Model Class Reliance (MCR) to 

examine the impact of variables across all instances of a model [31, 32, 33].  To achieve a valid 

implementation of MCR we first had to create a model which could return accurate predictions. 

This in turn seeds the creation of a set of best performing model instances called the “Rashomon 

set” [34].  Each model instance in this set utilizes the input variables in different ways to make 

predictions with the same accuracy. This occurs when input variables share or overlap in the 

predictive information they contain with regard to the output variable. This results in competing 

explanations of the phenomena which, when each is used, lead to the same predictive accuracy 

(explain the phenomena equally well). This existence of multiple differing explanations for the 

phenomena which are all equally well supported by the data is known as The Rashomon effect 

[34].  While the automatic enumeration of all competing equally valid explanations is currently 

intractable, MCR provides an indication of the least (MCR-) and most (MCR+) each variable is 

used in any of these competing explanations. This provides an indication of the absolute 

requirement (MCR-) and maximal utility (MCR+) of each variable rather than the variable's 

(somewhat arbitrary) utility in a randomly selected model from the Rashomon set. 

 
Weekly historical data on respiratory deaths in England and sales data from a high street retailer, 

including sales of cough, throat and decongestant medicines, were used to train and test a 

machine learning model.  Additional model features were made from information on week 

number, weather, indices of multiple deprivation (IMD), age/population level, demographics, 

housing and land use. We created an optimised random forest regressor model named PADRUS 

(Predicting the amount of deaths by respiratory disease using sales).  PADRUS predicts deaths 

by respiratory disease in 314 Lower Tier Local Authority Areas (LTLAs). We find variable 

permutation importance bounds, computed by MCR, show optimal predictions by the PADRUS 

model could not be achieved without sales data variables. 

 
3 Results and Discussion 

 

Results and Discussion to be published after peer-review 

 
 
4. Methods 

 
4.1 Open-source software. We used the following open-source software in the analysis: 

 

Matplotlib: https://matplotlib.org/ 

MCRForest: https://github.com/gavin-s-smith/mcrforest 

Numpy: https://numpy.org/  

Pandas: https://pandas.pydata.org/ 

Seaborn: https://seaborn.pydata.org/  

Scikit-learn: https://scikit-learn.org/  

SHAP:  https://shap-lrjball.readthedocs.io/en/latest/index.html#  

 
 

https://matplotlib.org/
https://github.com/gavin-s-smith/mcrforest
https://numpy.org/
https://pandas.pydata.org/
https://seaborn.pydata.org/
https://scikit-learn.org/
https://shap-lrjball.readthedocs.io/en/latest/index.html
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4.2 Ethics information 

 

The health data in this study was used under the terms of usual practice for research as defined in 

the UK Policy Framework for Health and Social Care Research, with the study designed to 

investigate the health issues in a population in order to improve population health [35]. To keep 

health data de-identified and extractable from the National Commissioning Data Repository 

(NDCR), death counts below 5 within an LTLA were suppressed and reported as 5.  Sales data 

used in the study was limited to the number of product types sold at a store.  No sales 

transactions were linked to individual customers, and no personal data was used in this study. 

 
4.3 Prior Exploratory Design and Data Analysis 

 

Prior to the design and investment in the following experimental design, initial data analysis and 

machine learning modelling took place using open source ONS data on registered deaths from 

respiratory disease (as the underlying cause) in England and Wales from 7th December 2009 to 

13th April 2015 [36]. The analysis of registered deaths from respiratory disease was framed as a 

regression task with the number of deaths predicted (the target class) a continuous output integer 

variable (y).  The models’ task was to predict national weekly respiratory deaths in advance.  The 

models inputs used ‘week number’ (1 to 52) of registered deaths and the following features 

created from commercial sales data only: weekly sales of cough, dry cough, mucus cough, 

decongestant and throat healthcare products. Commercial sales data was from a UK high street 

retailer, and was a sample of transactions recorded through 2,702,449 loyalty cards.  Due to the 

typical demographics of loyalty card holders approximately 87.4% of the sample were female. 

Data was stratified into a training (70%) and test set (30%), with the performance of the models 

examined against the held-out test data with time series cross validation (TSCV) applied.  TSCV 

is an alternative to k-fold cross-validation which would cause data leakage in time series data, 

and creates a walk-forward validation in order to evaluate the models’ ability for generalisation.  

Two metrics were used to score the regression task. These were RMSE (root mean squared 

error), and R² (coefficient of determination). RMSE is the square root of the average squared 

distance between the target (y) and the predicted score. R² measures the proportion of the 

variance in predictions (from the average of y) that can be explained by X (the model input 

variables). Several linear regression models were trained and evaluated in order to test for the 

optimal time lag in days between sales and registered deaths, for increased accuracy in 

predictions.  Lag refers to the time lapse between the date of registered deaths being predicted 

and the date of reported sales.   

 
4.4 Experimental Design 

 

The experiment was designed to run in two phases.  Phase 1 was to create a set of models to 

predict registered deaths from respiratory disease.  These models used commercial sales data and 

a wide range of other variables, which have shown associations with deaths from respiratory 

disease (Table 1). Phase 2 was to explain the models by identifying the different impact variables 

inputted have on the models’ predictions, including commercial sales data.  Phase 2 implements 

the novel variable importance tool MCR for random forest regressor [32, 33], and phase one 

needed to be achieved in order for valid implementation of MCR.   
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Data 

 

Data was collected for this study via working partnerships with NHSX, a UK commercial high 

street retailer, and via open-source data. Data sources and descriptions used in this study can be 

seen in Table 1 which lists the data used for the models’ target for predictions and features 

(variable inputs).  Commercial sales data was sales units of all in-store transactions with store 

location only; no customer information was linked to transactions.  Data was collected or 

aggregated to the geographic regions of LTLAs (Local Tier Local Authorities). LTLAs were 

used because as geographic areas used by government data they would enable the inclusion of a 

wide range of demographic, environmental and socioeconomic data previously found to be 

significant to the risk of death from respiratory disease (Table 1). LTLAs were chosen over other 

spatial divisions, including census areas MSOAs (Middle Layer Super Output Areas) and 

LSOAs (Lower Layer Super Output Areas), in order to find a balance between limiting data 

suppression of deaths done to maintain data de-identification, and maintaining a high enough 

level of spatial granularity for data to have a significant impact on predictions [50,51]. Data 

availability at LTLA level for open-source data for areas in the UK outside of England was 

limited.  Due to this limiting feature creation and the capacity to compare a wider range of data 

variables, analysis was restricted to 314 LTLAs in England alone.  Even with this restriction 

other variables under consideration for inclusion such as search engine trends and temporal 

pollen, traffic, and air pollution counts, could not be included as there was no access to these 

datasets at this level of geo-spatial granularity within the time limits of the project.  Data 

matching, the time series of available target predictions and available dynamic datasets of sales 

and weather, gave the dataset its timeframe of the 18th of March 2016 to 27th March 2020 for 

weekly deaths by respiratory disease.  The decision was made not to include registered deaths 

from respiratory disease with a 17 day lag, as in a real-world scenario this data would not yet be 

available [52].  

 
Prediction Target 

 

The data used for the target predictions (y) was all registered deaths from respiratory disease 

(ICD 10 coding: J00 - J99) by LTLA on a weekly time basis.  Death counts below 5 were 

suppressed and reported as 5. Suppression was between ⅕ and ¼.  
 
Feature Engineering 

 

All raw data was aggregated to 314 LTLA spatial resolutions across England for each of 56 input 

features. Features can be categorised as dynamic or static variables and were grouped by the 

following: week number, commercial sales, weather, indices of multiple deprivation, 

age/population level, demographics, housing and land use (Table 1).  These groupings were used 

for the Group-MCR (Model Class Reliance).  Dynamic (temporal) features were also aggregated 

by total weekly figures.  How the 56 features were created can be seen in Table 1 which lists any 

data manipulation from the original source, for example averages and percentages.   
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Feature Engineering Sales Data 

 
More complex data manipulation was needed for feature creation from commercial sales where 

the national transactional data was given by store location.  Sales from 2,354 stores distributed 

across England had to be allocated to 314 English LTLAs.  A store catchment model was 

developed that can attribute the proportion of sales occurring at each store to any particular 

MSOA (Middle Lower Super Output Area - a governmental geographic area) served. Using a 

naive Gaussian kernel based “influence” approach, we model the proportion of sales at a store 

which should be attributed to an MSOA. We established a two-dimensional Gaussian kernel over 

each store, centred at the store's longitude and latitude, and using a variance reflecting a 

theorised catchment radius (metres) corresponding to the store type (Regional Mall 15,000m, 

Hospital / Transport Hub 10,000m, Retail Park / Shopping Centre  8,000m, High Street / 

Supermarket 5,000m, Health Centre / Community 3,000m). We examined the “influence” the 

store has over a MSOA, by examining the value of the store’s probability density function at the 

region’s population weighted centroid. Due to the fact that Gaussian functions have an infinite 

range, a store will be assigned a non-zero “influence” for every MSOA. In order to simplify 

analysis, the “influence” attributed to a store for a given MSOA is zeroed if it is below a 

threshold of 3.449937e-318. The “total influence” of each store is then calculated by examining 

the sum of “influence” the store has over all 8000 MSOAs. The sales proportion each store 

attributes to a given MSOA, is the “influence” the store has over the MSOA, divided by its “total 

influence” over all regions. This process is run for all 3,000 stores (examining all 8,000 

MSOAs). In this way, we obtained a probability that the sale from any store was by an individual 

living in a particular MSOA. Using lookup tables, the apportioned sales were then aggregated to 

the LTLA level for analysis, and reduced to LTLAs within England. 

 
The total weekly sales units of key product types were chosen to create individual model 

features.  These consisted of all cough medicines, dry cough medicines, decongestant medicines 

and throat medicines.  Products were selected due to reports from previous literature associating 

a rise in their sales with an increase in respiratory illnesses [26, 28], and the prior exploratory 

analysis.  Sales and weather feature inputs were lagged at least 17 days prior to deaths for 

effective forecasting, again in line with the findings from the prior exploratory analysis.  Further 

features were created from the sales data by normalising product sales to create local and 

national sales ratios (See Figure 1) 
 
Modelling Approach 

 

The analysis of registered deaths from respiratory disease was framed as a regression task with 

the number of deaths predicted (the target class) a continuous output integer variable (y).  The 

model’s task was to predict weekly respiratory deaths 17 days in advance for each of the 314 

LTLA areas in England from 18th March 2016 to 27th March 2020.  The model was named 

PADRUS (Predicting the amount of deaths from respiratory disease using sales data). Data was 

stratified into a training set (45,844 data points from 18th March 2016 to 28th December 2018), 

approx. 70%) and test set (20,410 data points from 4th January 2019 to 27th March 2020, 

approx. 30%), with the performance of the models examined against the held-out test data. In 

addition an extra test set, to test models on the timeframe after the COVID-19 outbreak (18,840 

data points from 27th March to 21st May 2020), was also created once the dataset became  
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Figure 1. Formula for creating features from normalising sales using local and national ratios 

 

 

available during the experiment. Three metrics were used to score the regression task. These 

were RMSE (root mean squared error), MAE (mean absolute error) and R² (coefficient of 

determination). MAE is the mean of all differences (errors) between the target(y) and the 

predicted score. A random forest regressor model was trained and evaluated.  Meta-parameters 

for the model were optimised using a time series cross-validation (TSCV, 4 splits) grid-search on 

training data to prevent over-fitting. The model using optimised meta-parameters was then re-fit 

to the training dataset, and evaluated against the held-out test set.   

 
Creating a Baseline 

 

In order to assess whether the PADRUS model created was valuable, an appropriate baseline 

model was created. This baseline model was created using the same methodology; a random 

forest regressor optimized using a time series cross-validation grid-search on training data.  The 

baseline model performed the same task of predicting weekly respiratory deaths 17 days in 

advance for each of the 314 LTLA areas in England from 18th March 2016 to 27th March 2020. 

Data was stratified using the same splits on the training and test data (45,844 training data points, 

20,410 test data points), and model predictions on the held out test data were scored using 

RMSE, MAE and R².  The difference between PADRUS and the baseline model was feature 

inputs.  The baseline inputs consisted of only two input features.  The first the week number (1 to 

52) for a dynamic input, and secondly the static input of the population of over 65s in each 

LTLA.  The first feature was chosen because of the known seasonality of deaths by respiratory 

disease [37], yet used alone the prediction accuracy levels were very low. Therefore, the second 

feature was chosen due to the assumption that the size and age of population would greatly 

influence the number of deaths, with 90% of deaths from respiratory disease in Europe occurring 

in those aged 65 and over [43]. 
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Variable Importance Tools 
 
In order to compare the variables included in the PADRUS model, we conducted a feature 

importance analysis.  This scored the importance of each feature (variable) in producing the 

model’s predictions. We used a standard variable importance tool within the scikit-learn python 

library. This was the permutation importance function which measures feature importance by the 

expected increase in error after damaging that feature column [53].  On top of this inbuilt 

variable importance tool, a SHAP (SHapley Additive exPlanations) Analysis [54] was 

conducted.  SHAP carries out a more complex calculation of feature importance. The Kernel 

Explainer SHAP tool used in this analysis applies weighted linear regression to determine the 

importance of each feature based on Shapley values from game theory and coefficients [54].  

Both tools were applied to the training data set on an arbitrary instance of the PADRUS model.  

The SHAP analysis is computationally expensive and therefore was run on two random samples 

of data points of 100 and 1000.  This enabled a comparison of results between sample sizes to 

ensure a large enough sample had been evaluated. 

 
By running these variable importance tools on one arbitrary model, misleading results can be 

given due to the stochastic nature of the model’s machine learning algorithms.  This is a problem 

because different instances of an optimised model class can use different variables (features) and 

in different ways to achieve the same model predictive performance. To address the problem of 

standard variable importance tools only evaluating one instance of the PADRUS model, MCR 

(Model Class Reliance) was applied. MCR was developed by Fisher et al. to compute the feature 

importance bounds across all optimal models called the Rashomon set for Kernel (SVM) 

Regression (polynomial run-time) [31].  Smith, Mansilla and Goulding introduced a new 

technique that extends the computation of MCR to Random Forest classifiers and regressors 

[32]. MCR builds on permutation for a single model, computing the permutation feature 

importance bounds (MCR-, MCR+) for an input variable across all instances of PADRUS; 

calculating the minimum and maximum impact a variable could have on the predictions across 

all instances of the model (See Figure 2).  This initial MCR analysis evaluated each feature 

individually for its importance, for example the importance of ‘minimum temperature’.  It did 

not assess how important a dataset type used to create a number of the models’ features was to 

predictions as a whole, for example ‘weather’. Ljevar et al. introduced a Grouped Feature 

approach to MCR for random forest [33].  Group-MCR was created in order to calculate the 

effects of variable groups, measuring the importance of a collection of features together on the 

predictions of random forest classifiers [33].  In order to evaluate the importance of groups of 

variables, and their impact in concert on the PADRUS model, we apply for the first time Group-

MCR to a random forest regressor.  Group-MCR is achieved through a modification of the 

random forest MCR algorithm, which reconsiders the definition of Model Reliance to be with 

respect to a group of variables rather than a single variable [33]. 
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Figure 2. Diagrammatic representation of the difference between other variable importance tools and 

MCR 
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MCR can be used to establish the value of using a variable in a model being created for 

healthcare predictions, by suggesting which data types must be acquired for a predictive model 

to work effectively.  In a healthcare setting it must be considered whether it is worth the 

investment in acquiring a type of data if another dataset works equally well, and is more 

affordable, or easier to access.  MCR highlights which data types could be irreplaceable and 

which could be interchangeable.  MCR results can also be used to guide the reduction of 

variables in order to create more transparent models for healthcare predictions.  Group-MCR 

offers us further information by implying how groups of variables may be working together in 

the model’s algorithms.  By enabling the reduction of the number of variables, MCR can also be 

used to help decrease the dimensionality of the model leading to a more manageable global 

surface area to search for optimized meta-parameters.  Creating the most accurate model possible 

using the chosen variables, would further evidence the value of their inclusion.   

 

Modelling without sales data 

 

Although MCR can explain which variables need to be included in a model to achieve the 

maximum accuracy rates for predictions, it cannot compute the difference in accuracy (the loss) 

if those variables were to be excluded from the model.  In order to determine the loss in accuracy 

if sales data were to be left out of the model, the model PADRUNOS (Predicting the amount of 

deaths from respiratory disease using no sales) was created as a comparison to PADRUS. 

PADRUNOS was created in line with the baseline and PADRUS model methodology, as a 

random forest regressor optimized using a time series cross-validation grid-search on training 

data.  MCR and Group-MCR was applied to PADRUNOS to calculate how the variables were 

used differently. 

 
Testing the models in the Pandemic 

 

During the course of the experiment, new sales data became available which facilitated testing 

the models PADRUS and PADRUNOS on a time period where the COVID-19 outbreak, and 

pandemic occurred.  Registered deaths from respiratory disease and weather data were also 

available for a proportion of this timeframe.  This enabled models to be tested on a new held-out 

dataset from the 3rd of April 2020 to 21st April 2021. 

 

5 Data availability 

The health data used in this study is not publicly available but can be requested via NHS England 

and Improvement NCDR [55].  The shopping dataset used in this study is commercially sensitive 

and therefore not available for access. All other datasets are open source and can be accessed via 

the website links given in Table 1. 

 

6 Code availability 

The analysis code developed for this paper can be found online at 

https://github.com/nhsx/commercial-data-healthcare-predictions  

 
 
 
 

https://github.com/nhsx/commercial-data-healthcare-predictions
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Table 1. Model data used for the target for predictions and feature creation (variable inputs).  (All inputs are aggregated to 314 LTLAs across 

England, and weekly rates if the variable is dynamic with a 17 day lag unless stated otherwise.) 
 

Data Description Data Source Research relating variable 

to respiratory disease 

Target (y) Temporalit

y 

Group 

for MCR 

ONS (Office for National Statistics) deaths 

registered weekly in England from diseases of the 

respiratory system (ICD-10 Coding J00–J99) 

NHSX/Digital receives data 

through request from ONS - 

https://digital.nhs.uk/servic

es/primary-care-mortality-

database. 

N/A Weekly deaths from respiratory disease in a 

LTLA 

dynamic N/A 

 -  -  - Feature (X)  -  - 

Week number N/A Moriyama, M., 

Hugentobler, W. J., & 

Iwasaki, A. [37] 

Number of week from 1 to 52 dynamic week 

Weekly sales data from a UK high street retailer 

with stores distributed across the UK 

University partnership with 

UK Retailer 

Davies & Finch [28]  Total weekly sales dynamic sales 

Weekly sales of decongestant dynamic sales 

Weekly sales of throat meds dynamic sales 

Weekly sales of dry cough meds dynamic sales 

Weekly sales of all cough meds dynamic sales 

Total weekly sales 24 day lag dynamic sales 

Weekly sales of decongestant 24 day lag dynamic sales 

Weekly sales of throat meds 24 day lag dynamic sales 

Weekly sales of dry cough meds 24 day lag dynamic sales 

Weekly sales of all cough meds 24 day lag dynamic sales 

https://digital.nhs.uk/services/primary-care-mortality-database
https://digital.nhs.uk/services/primary-care-mortality-database
https://digital.nhs.uk/services/primary-care-mortality-database
https://digital.nhs.uk/services/primary-care-mortality-database
https://digital.nhs.uk/services/primary-care-mortality-database
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Local Ratio of Weekly sales of decongestant dynamic sales 

Local Ratio of Weekly sales of throat meds  dynamic sales 

Local Ratio of Weekly sales of dry cough meds  dynamic sales 

Local Ratio of Weekly sales of all cough meds  dynamic sales 

Multiplier of Weekly sales of decongestant dynamic sales 

Multiplier of Weekly sales of throat meds dynamic sales 

Multiplier of Weekly sales of dry cough meds dynamic sales 

Multiplier of Weekly sales of all cough meds dynamic sales 

English indices of deprivation 2019. Index of 

Multiple deprivation ranks Lower-layer Super 

Output Areas in England from 1 (most deprived 

area) to 32,844 (least deprived area).  Combines 

data from seven domains: Income Deprivation 

(22.5%), Employment Deprivation (22.5%), 

Education, Skills and Training Deprivation (13.5%), 

Health Deprivation and Disability (13.5%), Crime 

(9.3%), Barriers to Housing and Services (9.3%), 

Living Environment Deprivation (9.3%). Summaries 

are available at LTLA level. Living Environment 

measures the quality of both indoor and outdoor 

local environments. The ‘indoors’ living 

environment measures the quality of housing; 

while the ‘outdoors’ living environment contains 

measures of air quality and road traffic accidents. 

[38] 

https://www.gov.uk/govern

ment/statistics/english-

indices-of-deprivation-2019 

Patel et al [39], Bennett et 

al. [40], Webb, Blane, and 

de Vries [41], Pannullo et 

al. [42] 

LTLA IMD score for Living Environment 

Deprivation Domain 

static IMD 

LTLA IMD score for Crime Domain static IMD 

LTLA IMD score for Barriers to Housing and 

Services Domain 

static IMD 

Population weighted average of the combined 

IMD ranks for the LSOAs in the LTLA 

static IMD 

Population weighted avg of the combined IMD 

overall score for the LSOAs in the area of 

interest 

static IMD 

Extent of deprivation within a local authority static IMD 

Concentration of deprivation within a local 

authority 

static IMD 

2019 mid year population estimates based on the 

ONS census available at LTLA level and above. 

https://www.nomisweb.co.

uk/datasets/pestsyoala 

OECD/European Union. 

"Mortality from respiratory 

Population aged 16 to 24 in an area static age 

Population aged 25 to 49 in an area static age 

https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019
https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019
https://www.nomisweb.co.uk/datasets/pestsyoala
https://www.nomisweb.co.uk/datasets/pestsyoala
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diseases." Health at a 

glance: Europe 2018: state 

of health in the EU cycle 

[43] 

Population aged 50 to 64 in an area static age 

Population aged over 64 in an area static age 

Population density for the LTLA (people/square 

km) 

static demo 

Percent of LTLA that are male static demo 

Percent of LTLA that are female static demo 

Housing age data from the Valuation Office 

Agency 

2020 

https://data.cdrc.ac.uk/data

set/dwelling-ages-and-

prices/resource/dwelling-

age-group-counts-lsoa 

Pevalin,  Taylor, and Todd 

[44], Ellaway and 

Macintyre [45].  

Percent of houses in LTLA built prior to 1919 static housing 

Percent of houses in LTLA built prior to 1940 static housing 

Percent of houses in LTLA built prior to 1973 static housing 

Percent of houses in LTLA built prior to 1983 static housing 

Land use in England from 2018 live tables from the 

Department for Levelling Up, Housing and 

Communities and Ministry of Housing, 

Communities & Local Government 

https://www.gov.uk/govern

ment/statistical-data-

sets/live-tables-on-land-use 

Gartner et al. [46] Percent of land use associated with community 

buildings  

static land_us

e 

Percent of industrial land use in LTLA static land_us

e 

Percent of residential land use in LTLA static land_us

e 

Percent of land used by transport and utilities 

in LTLA 

static land_us

e 

Percent of agricultural land use in LTLA static land_us

e 

Percent of natural land use in LTLA static land_us

e 

https://data.cdrc.ac.uk/dataset/dwelling-ages-and-prices/resource/dwelling-age-group-counts-lsoa
https://data.cdrc.ac.uk/dataset/dwelling-ages-and-prices/resource/dwelling-age-group-counts-lsoa
https://data.cdrc.ac.uk/dataset/dwelling-ages-and-prices/resource/dwelling-age-group-counts-lsoa
https://data.cdrc.ac.uk/dataset/dwelling-ages-and-prices/resource/dwelling-age-group-counts-lsoa
https://www.gov.uk/government/statistical-data-sets/live-tables-on-land-use
https://www.gov.uk/government/statistical-data-sets/live-tables-on-land-use
https://www.gov.uk/government/statistical-data-sets/live-tables-on-land-use
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Percent of land used by outdoor recreation 

(e.g., sports fields and parks) in LTLA 

static land_us

e 

Property type/ethnicity/household composition 

ONS 2011 census datasets 

https://www.nomisweb.co.

uk/sources/census_2011 

Prats-Uribe, Paredes and 

Prieto-Alhambra [47] 

Percent of people in LTLA of non white 

ethnicity 

static demo 

Percentage of lone parent families in LTLA static demo 

Percent of "other children" in families in LTLA static demo 

Percent of detached houses in LTLA static housing 

Percent of semi-detached houses in LTLA static housing 

Percent of terraced houses in LTLA static housing 

Percent of flats in LTLA static housing 

Weather. ERA5 data from European Centre for 

Medium-Range Weather Forecast 

https://copernicus.eu/   Moriyama, Hugentobler & 

Iwasaki [37], Hajat, Bird & 

Haines [48], Nichols et al. 

[49] 

Weekly average rainfall in LTLA dynamic weather 

Weekly total rainfall in LTLA dynamic weather 

Weekly minimum temperature in LTLA dynamic weather 

Weekly average temperature in LTLA dynamic weather 

Weekly maximum temperature in LTLA dynamic weather 

https://www.nomisweb.co.uk/sources/census_2011
https://www.nomisweb.co.uk/sources/census_2011
https://copernicus.eu/


January 22 18 

 


	NHSX Report: Value of Commercial Product Sales Data in Healthcare Prediction
	Figure 1. Formula for creating features from normalising sales using local and national ratios
	Figure 2. Diagrammatic representation of the difference between other variable importance tools and MCR
	Table 1. Model data used for the target for predictions and feature creation (variable inputs).  (All inputs are aggregated to 314 LTLAs across England, and weekly rates if the variable is dynamic with a 17 day lag unless stated otherwise.)


